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Abstract

An accurate conservative interpolation (remapping) algorithm is an essential component of most arbitrary La-

grangian–Eulerian (ALE) methods. In this paper we describe a local remapping algorithm for a positive scalar function.

This algorithm is second-order accurate, conservative, and sign preserving. The algorithm is based on estimating the

mass exchanged between cells at their common interface, and so is equally applicable to structured and unstructured

grids. We construct the algorithm in a series of steps, clearly delineating the assumptions and errors made at each step.

We validate our theory with a suite of numerical examples, analyzing the results from the viewpoint of accuracy and

order of convergence.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In numerical simulations of fluid flow, the choice of the computational grid is crucial. Traditionally, there

have been two viewpoints, utilizing the Lagrangian or the Eulerian framework, each with its own advantages
and disadvantages. In a pioneering paper, Hirt et al. [14] developed the formalism for a grid whose motion

could be determined as an independent degree of freedom and showed that this general framework could be

used to combine the best properties of Lagrangian and Eulerian methods. This class of methods has been

termed arbitrary Lagrangian–Eulerian or ALE. Many authors have described ALE strategies to optimize

accuracy, robustness, or computational efficiency, see for example [2,4,15,17, 19,23,29].

It is possible to use the ALE formalism to run in a mainly Lagrangian mode, with an occasional rezone/

remap whenever the grid becomes too distorted. However, it is generally more effective to rezone and remap

on each cycle, a strategy termed continuous rezoning.
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It is possible to formulate the ALE scheme as a single algorithm [7] based on solving the equations in a

moving coordinate frame. However it is more usual to separate it into three separate phases. These are: (1)

a Lagrangian phase in which the solution and grid are updated; (2) a rezoning phase in which the nodes of

the computational grid are moved to a more optimal position; and (3) a remapping phase in which the

Lagrangian solution is interpolated onto the rezoned grid. One advantage of continuous rezone is that the

individual grid movements can be constrained to be small, allowing the use of a local remapper where mass

(and other conserved quantities) is only exchanged between neighboring cells. Local remappers are logically

simpler and computationally more efficient than global remappers, where an explicit or implicit overlay of
the two arbitrary meshes is required [8–10,13].

The main goal of this paper is to describe a new remapping algorithm for use in continuous rezone

ALE simulations. Typically, local ALE remappers are constructed by adapting advection algorithms,

for which there is a huge literature, cf. [1,2,4–6,11,22,25,26,28,29]. However, the connection between the

advection equation and conservative remapping does not appear to be well understood; in particular,

the underlying assumptions and discretization errors of using advection methods for remapping are

not easily identified. In this paper, we will construct our remapping algorithm without reference to

advection.
We will proceed in a series of steps, with the assumptions and errors of each step clearly delineated. The

final result will be a second-order accurate algorithm, fully conservative, and sign preserving (e.g., if the

original quantity is everywhere positive, then the remapped quantity will be everywhere positive). Our

algorithm is face based, implying that it is equally applicable to structured and unstructured grids. To

validate our theory, we will perform a suite of two-dimensional (2D) examples (the results of extensive

testing of our method in (1D) examples and additional (2D) examples can be found in [24]), and will an-

alyze the results both for accuracy and order of convergence.

Although we make no reliance on advection theory, we do borrow one idea from the advection
literature. The MPDATA schemes [31,32] employ an upwind estimate to compensate the second-order

error. By construction, such compensation is sign-preserving and leads to fully second-order accurate

schemes. We have found that this technique to be equally effective in compensating remapping

error.

A precise estimate of the remap error is essential for error compensation. However it has an additional

use that is not so obvious and deserves brief mention. The goal of the rezoner is to move the mesh to reduce

the overall error of the simulation. This can be achieved within the rezoning algorithm by formulating an

error functional, which is a function both of the Lagrangian solution and of the grid geometry, and then
minimizing this functional by moving the grid. In this context, the reduction of the Lagrangian error must

be weighed against the additional error resulting from the remapping.

An outline of this paper is as follows. We begin in Section 2 by carefully defining the issues and goals

of a remapping scheme. In Section 3, we will build a framework for remapping, based on a partition of

the volume of a new (i.e., rezoned) cell in terms of its overlap with the old (i.e., Lagrangian) cells. We will

show that different remap schemes result from the details of the reconstruction of the discrete density

function. We will then reformulate these schemes in terms of generalized face fluxes, thus simplifying the

task of ensuring exact conservation. In Section 4, we will show that the volume integral over a new cell
can be expressed as the volume integral over the old cell plus a sum of surface integrals (line integrals in

2D) over the regions covered (swept) by the displacement of the cell faces – i.e., the ‘‘swept regions’’.

Based on this decomposition, we will define a first-order accurate ‘‘exact’’ donor cell, and an ‘‘approx-

imate’’ donor-cell remapping algorithm. Both methods use a piecewise constant reconstruction of the

density; in the approximate method, we will further simplify the computation of the integrals over the

swept regions by considering only the two densities adjacent to the face. This last approximation elim-

inates the need for detailed calculations of the intersections of the sides of the new and the old grids. In

Section 5, we will analyze the error of the approximate donor cell algorithm, and devise a method to
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compensate error depending on the sign of the swept regions. The resulting algorithm is positivity

preserving, and has overall second-order accuracy.

In Section 6 we will present two-dimensional simulations in which several known functions are re-

mapped on different sequences of grids, including unstructured grids. We will show the results graphically

and analyze them from the viewpoints of accuracy and order of convergence. We will summarize our results

in Section 7.

2. Background and rationale

2.1. Grids

We consider a two-dimensional computational domain X, assumed to be a general polygon. We assume
that we are given a mesh on X that consists of cells Ci; i ¼ 1; . . . ; imax that cover X without gaps or

overlaps. The cells Ci can be nonconvex.

Each cell is defined by a set of vertices (which we will sometimes call points), denoted by P ðCiÞ, and a set
of sides (which are segments of straight lines), denoted by F ðCiÞ. Each side Fk is shared by only two cells,
denoted by CðFkÞ. Each vertex Pm may be shared by an arbitrary number of cells. We denote the set of cells
that have a common vertex by CðPmÞ; similarly, we denote the set of all sides sharing a common vertex Pm by
F ðPmÞ. The cells that share a side or vertex with a particular cell are called neighbors; the set of all the

neighbors of a cell Ci, is denoted CðCiÞ. The reciprocal relation of neighborhood defines the connectivity of
the grid.

Let Pa; Pb; Pc; . . . be points. We denote the line segment joining two points by {Pa; Pb}.When three or more
points are listed within the curly brackets, we denote the closed figure defined by the points in the order

prescribed. For example, {Pa; Pb; Pc} is a triangle.
In the context of ALE methods, we consider two grids with the same connectivity – i.e., the same number

of cells and vertices, and the same neighbor relations. The grid that contains the cells Ci is called the

Lagrangian or old grid. The second grid, containing the cells ~CCk, is called the rezoned or new grid. In the

ALE method, the rezoned grid results from an algorithm (i.e., a rezoner) that identifies and mitigates in-

adequacies of the Lagrangian grid. In Figs. 1 and 2, we show examples of a Lagrangian grid (solid lines)

and a rezoned grid (dashed lines). The rezoned grids were generated using the optimization-based reference

Jacobian strategy described in [16]. The rezoned grid produced by this algorithm remains ‘‘close’’ to

Lagrangian grid, but has better geometrical quality. Fig. 2 illustrates how complicated the relative locations
of the two grids can be even when displacements of the nodes are small.

After rezoning, the old mesh {Ci} is mapped into a new mesh { ~CCi}.We define a set CðCiÞ ¼ [kCk, such

that

~CCi 2 CðCiÞ: ð2:1Þ

For any two grids, such a set exists because ~CCi 2 [imax
k¼1Ck. However we will always consider the minimal set

for which (2.1) holds. We note that the new remapping method that we will describe in this paper does not

require any explicit knowledge of CðCiÞ. For the rezoning method descrbed in [16] CðCiÞ ¼ Ci [ CðCiÞ; that
is, the new cell ~CCi is contained in the union of the old cell Ci, and its immediate neighbors, see, for example,

Fig. 2(b).

In this paper, we will require a minimal regularity of the grid. In particular, we will assume there exists a

small parameter h that characterizes the average cell size, and that tends to zero as the grid is refined. We

further assume that there exist constants, independent of h, such that the length of any side, li, and the (2D)
volume of any cell, Vi satisfy
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cLh6 li 6CLh; cV h26 V ðCiÞ6CV h2:

2.2. Notation

In this paper, we will describe several different remapping schemes. To distinguish among them con-

sistently, we adopt the following notation. We will write all physical quantities (e.g., the density q or the
mass m) on the old (Lagrangian) grid with no superscript, whereas the presence of any superscript indicates

the quantity on the new (remapped) grid. We will use the superscript ex for the ‘‘exact’’ value, the su-

perscript de for the exact donor-cell scheme described in Section 3, the superscript da for the ‘‘approxi-

mate’’ donor cell scheme described in Section 4, and the superscripts mc, mm, and mb for the multipass

schemes described in Section 5. On occasion, we will write formulas that apply for any choice of superscript,

and then we use the generic symbol *.

Fig. 2. Lagrangian and rezoned grid: (a) entire region; (b) fragment.

Fig. 1. (a) Old (Lagrangian) grid; (b) new (rezoned) grid.
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2.3. Statement of the remapping problem

We assume that there is a positive function qð~rrÞ > 0, r ¼ ðx; y; zÞ, which we call density. that is defined
throughout the problem domain. The only information that we are given about this function is its mean

value in each of the cells of the old grid:

qi ¼
R
Ci

qðrÞdV
V ðCiÞ

; ð2:2Þ

where V ðCiÞ is the volume of the cell Ci. The numerator of (2.2) is the cell mass:

mi �
Z
Ci

qðrÞdV ; ð2:3Þ

and so the density is:

qi ¼
mi

V ðCiÞ
: ð2:4Þ

The total problem mass is

M �
Z

X
qðrÞdV ¼

Ximax
i¼1

Z
Ci

qðrÞdV ¼
Ximax
i¼1

mi ¼
Ximax
i¼1

qiV ðCiÞ: ð2:5Þ

The problem statement is to find accurate approximations m�
i for the masses of the new cells

m�
i � mexi ¼

Z
~CCi

qðrÞdV : ð2:6Þ

The issue is to define what is meant by ‘‘accurate’’, since the underlying density field is not known in detail.

We will consider mathematical smoothness and physical realizability of the density to quantify accuracy.

There are constraints that the new cell masses must obey that follow from the positivity of the density
function and from global conservation of the total mass. In particular, we require that all m�

i are positive,

m�
i > 0. We also require

Ximax
i¼1

m�
i ¼ M ; ð2:7Þ

a statement of global conservation. Because each cell mass is positive, global conservation implies that m�
i is

bounded from above. This can be taken as a definition of stability for remapping.

The approximate mean values of density in the new cells are defined by

q�
i ¼

m�
i

V ð ~CCiÞ
: ð2:8Þ

The positivity of m� implies q�
i > 0 in the new cells. We will refer to the problem of finding accurate,

bounded approximations for the masses and the corresponding mean densities on the new mesh, such that

total mass is conserved, as positivity-preserving remapping, or alternately, as positivity-preserving conser-

vative interpolation.

We append a remark about the underlying density function, whose existence we have postulated. Al-

though such a function may be assumed to be uniquely specified at the beginning of a problem, this

uniqueness will vanish as the numerical simulation progresses. More generally at any problem time, we will
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define a class of continuous functions whose volume integrals over the cells are the cell masses, and which

are smooth in the sense that their third derivatives in space, properly nondimensionalized, are bounded.

When we refer to an exact solution, we mean any member of this class.

3. Cell-intersection-based donor-cell method

Each cell of the new mesh ~CCi is formed from pieces of the cells of the old mesh Ci

~CCi ¼
[imax
k¼1

~CCi \ Ck

� �
¼

[
k2CðCiÞ

~CCi \ Ck

� �
: ð3:1Þ

A natural approach to remapping can be based on the preceding representation of the new cell:Z
~CCi

qðrÞdV ¼
X

k2CðCiÞ

Z
~CCi\Ck

qðrÞdV : ð3:2Þ

This formula would be exact if we knew the density function everywhere on the old mesh. However, as

pointed out earlier, we only know the average value of qðrÞ within a cell. Thus it is necessary to reconstruct
the density function.

The simplest reconstruction is to assume that density is piecewise constant, and equal to the given cell

average for each cell of the old mesh. ThenZ
~CCi\Ck

qðrÞdVr � qk 
 V ~CCi \ Ck

� �
: ð3:3Þ

This leads to the following formula for the remapped masses on the new mesh:

mdei ¼
X

k2CðCiÞ
qk 
 V ~CCi \ Ck

� �
: ð3:4Þ

We will refer to the remapping method of (3.4) as cell-intersection-based donor-cell (CIB/DC) method. The

CIB acronym reminds us that we have as yet made no approximations to the areas of overlap between the

cells of the old and new meshes. The DC acronym arises from the idea that the old cell donates a portion of

its mass to the new cell, estimated from piecewise constant reconstruction of the density. The DC termi-

nology is used for similar approximations of the advection equation.

The CIB/DC method preserves the positivity of the mass field, because mdei is defined by the summation
of nonnegative pieces. The new mean density is

qdei ¼
X

k2CðCiÞ
qk 


V ~CCi \ Ck

� �
V ~CCi

� � : ð3:5Þ

Clearly each coefficient of qk in this formula is positive. FurthermoreX
k2CðCiÞ

V ~CCi \ Ck

� �
¼ V ~CCi

� �
ð3:6Þ

so that the sum of the coefficients of qk is unity. It follows that

min
imax

k¼1
qk 6 min

k2CðCiÞ
qk 6 qdei 6 max

k2CðCiÞ
qk 6 max

imax

k¼1
qk; ð3:7Þ
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i.e., the approximate new mean densities are bounded, and no new local extrema are created. The CIB/DC

method is conservative because

Ximax
i¼1

mdei ¼
Ximax
i¼1

X
k2CðCiÞ

qk 
 V ~CCi \ Ck

� � !
¼
Ximax
i¼1

Ximax
k¼1

qk 
 V ~CCi \ Ck

� � !

¼
Ximax
k¼1

Ximax
i¼1

qk 
 V ~CCi \ Ck

� � !
¼
Ximax
k¼1

qk 

Ximax
i¼1


V ~CCi \ Ck

� � !
¼
Ximax
k¼1

ðqk 
 V ðCkÞÞ

¼
Ximax
k¼1

mk ¼ M : ð3:8Þ

The CIB/DC method is just one of the methods that can be based on (3.2). The conservativeness of such

methods is guaranteed whenever the reconstruction of density within the old cell preserves its mean value,

and the overlap volumes between the old and new cells are calculated exactly. However, to assure the

positivity of density for an arbitrary new mesh, the reconstructed density must be positive everywhere

within each cell of the old mesh. This is not an easy task and generally requires special procedures that limit

the variability of the density. We refer the interested reader to [3,18] and the references therein, where the

process of reconstruction is considered in the framework of solving advection equations. We note that CIB
methods are very general and in principle can be applied when the old and new grids are not related to each

other – even may have different number of cells of arbitrary shapes and different connectivity. CIB/DC is

only first-order accurate for a smooth function qðrÞ. It does preserve a constant density field. Appropriate
piecewise linear reconstruction may lead to a second-order accurate method. Note that CIB methods re-

quire finding all intersections between the cells of the old and new grids.

When the old and new grids have the same connectivity, we can reformulate the CIB/DC method based

on the following representation of new cell:

~CCi ¼ Ci [
[

k2C0ðCiÞ

~CCi \ Ck

0
@

1
An [

k2C0ðCiÞ
Ci \ ~CCk

0
@

1
A; ð3:9Þ

where

C0ðCiÞ ¼ CðCiÞ n Ci; ð3:10Þ

and where n is difference operation on sets. In words, the new cell is the old cell plus pieces of neighboring
cells that are added minus pieces of the old cell lost to other new cells. The corresponding representation for

the exact mass of the new cell is

mexi ¼
Z

~CCi

qðrÞdV ¼
Z
Ci

qðrÞdV þ
X

k2C0ðCiÞ

Z
~CCi\Ck

qðrÞdV �
X

k2C0ðCiÞ

Z
Ci\ ~CCk

qðrÞdV

¼ mi þ
X

k2C0ðCiÞ
Fex

i;k; ð3:11Þ

where

Fex
i;k ¼

Z
~CCi\Ck

qðrÞdV �
Z
Ci\ ~CCk

qðrÞdV ð3:12Þ

are generalized mass fluxes. We note that the second cell indicated by the index k may be any cell in the

neighborhood and is not restricted to those with whom the cell Ci has a common side. Eq. (3.11) is exact,
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and illustrates that the mass of the new cell can be written as the mass of the corresponding old cell plus the

exchange of masses with the neighboring cells.

The form above has the important theoretical advantage that it is conservative without requiring any

properties in the reconstruction nor an exact integration of the reconstructed function. In fact, any formula

of the form

m�
i ¼ mi þ

X
k2C0ðCiÞ

F�
i;k; ð3:13Þ

whereF�
i;k ¼ �F�

k;i some approximation of the flux, will be conservative because of detailed balance. In this
form, it is possible to make simplifying approximations that will allow us to avoid the detailed calculation of

the intersections between the cells of the new and old meshes without sacrificing exact conservation.

Before proceeding to discuss simplifications, we note that by defining

Fde
i;k ¼ qk 
 V ~CCi \ Ck

� �
� qi 
 V Ci \ ~CCk

� �
; ð3:14Þ

we recover the CIB/DC defined in (3.4). The associated flux form of the CIB/DC method for the mean

density is

qdei ¼ 1

V ~CCi

� � 
 V ðCiÞ

0
@

8<
: �

X
k2C0ðCiÞ

V Ci \ ~CCk

� �1A
9=
; 
 qi þ

X
k2C0ðCiÞ

qk 

V ~CCi \ Ck

� �
V ~CCi

� � ; ð3:15Þ

which is equivalent to (3.5). The coefficient of qi is nonnegative; in the worst case Ci does not intersect ~CCi

(i.e., the two cells have no points in common), and ~CCi is covered-by old cells from C0ðCiÞ. Then this co-
efficient is exactly zero. Algorithms based on (3.13) will always be conservative. However, positivity

preservation and stability must be investigated for each particular choice of flux.

To implement CIB methods, one has to solve the purely geometric problem of finding cell intersections.
This is difficult even in 2D because of geometrical degeneracies, which often occur when the old and new

grids are close (as it is the case for ALE methods where rezoning is done on each time step). In 3D further

difficulties arise, because the faces of the cells are not planar (see for example, [13]). In the following section,

we will describe accurate approximations that do not require finding cell intersections.

4. Simplified face-based donor-cell method

In this section, we describe an approximate remapping method based on the flux form (3.11). We term

this the simplified face-based donor-cell (SFB/DC) method. The acronym SFB indicates that the method

does not require finding intersections between cells on the old and the new meshes. The approximations

that we use are based on two ideas. First, up to fourth-order accuracy, the exact masses of new cells can be

represented as line integrals of polynomial functions over boundary of a new cell. Second, the line integral

over the boundary of the new cell is the line integral over the boundary of the old cell (which is the old

mass) plus the line integrals over the regions swept by the movement of the faces (i.e., sides) of the cell Ci.

Here we develop the ideas of the SFB/DC method for a logically rectangular grid (some details for
unstructured grids are given in [24]). For logically rectangular grids we adopt the following notation.

Vertices (points) are enumerated with two indices Pi;j : i ¼ 1; . . . ;m; j ¼ 1; . . . ; n: Each grid point Pi;j has
coordinates ðxi;j; yi;jÞ. The cells have indices ðiþ 1

2
; jþ 1

2
Þ, with i ¼ 1; . . . ;m� 1; j ¼ 1; . . . ; n� 1. The cell

C
iþ1
2
;jþ1
2

has vertices Pi;j; Piþ1;j; Piþ1;jþ1; Pi;jþ1. The side connecting points Pi;j and Piþ1;j is Fiþ1
2
;j
and the side

connecting points Pi;j and Pi;jþ1 is Fi;jþ1
2

.
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4.1. Volume and line integrals

Here we show that, for functions qðx; yÞ that have bounded second derivative, the mass (up to fourth-
order in mesh size) can be written as the sum of line integrals of polynomial functions over the boundaries

of the new cell. These, in turn, are just the usual one-dimensional integrals of polynomials, because the

boundaries are just segments of straight lines whose coordinates x and y satisfy a linear equation.
Consider the Taylor series expansion for qðx; yÞ with origin at the point ðx0; y0Þ

qðx; yÞ ¼ qðx0; y0Þ þ oq
ox

����
ðx0;y0Þ


 ðx� x0Þ þ oq
oy

����
ðx0;y0Þ


 ðy � y0Þ þO ðx
�

� x0Þ2; ðy � y0Þ2
�
: ð4:1Þ

Using (4.1) with ðx0; y0Þ 2 ~CC
iþ1
2
;jþ1
2

and the definition of mass, we derive

mex
iþ1
2
;jþ1
2

¼
Z

~CC
iþ
1
2
;jþ
1
2

qðx; yÞdxdy

¼ qðx0; y0Þ 

Z

~CC
iþ
1
2
;jþ
1
2

dxdy þ oq
ox

����
ðx0;y0Þ



Z

~CC
iþ
1
2
;jþ
1
2

ðx� x0Þdxdy

þ oq
oy

����
ðx0;y0Þ



Z

~CC
iþ
1
2
;jþ
1
2

ðy � y0Þdxdy þOðh4Þ: ð4:2Þ

Now by Green�s theorem, we haveZ
~CC
iþ
1
2
;jþ
1
2

dxdy ¼
I
o ~CC

iþ
1
2
;jþ
1
2

xdy;
Z

~CC
iþ
1
2
;jþ
1
2

xdxdy ¼
I
o ~CC

iþ
1
2
;jþ
1
2

x2

2
dy;

Z
~CC
iþ
1
2
;jþ
1
2

y dxdy ¼ �
I
o ~CC

iþ
1
2
;jþ
1
2

y2

2
dx;

where o ~CC
iþ1
2
;jþ1
2

is the counter-clockwise oriented boundary of the cell ~CC
iþ1
2
;jþ1
2

o ~CC
iþ1
2
;jþ1
2

¼ f ~PPi;j; ~PPiþ1;j; ~PPiþ1;jþ1; ~PPi;jþ1g: ð4:3Þ

So the computation of the mass of the new cell, up to fourth-order, can be reduced to computation of

boundary integrals (assuming that we know the value of q and its first derivatives at ðx0; y0Þ). Because the
cell is a polygon, its boundary is the union of segments of straight lines

o ~CC
iþ1
2
;jþ1
2

¼ f ~PPi;j; ~PPiþ1;jg; f ~PPiþ1;j; ~PPiþ1;jþ1g; f ~PPiþ1;jþ1; ~PPi;jþ1g; f ~PPi;jþ1 ~PPi;jg: ð4:4Þ

Now considerZ
f ~PP i;j; ~PPiþ1;jg

xdy:

The equation of the straight line passing through the nodes ~PPi;j; ~PPiþ1;j is

y ¼ ~yyi;j þ
~yyiþ1;j � ~yyi;j
~xxiþ1;j � ~xxi;j


 ðx� ~xxi;jÞ:

Thus, on this segment

dy ¼
~yyiþ1;j � ~yyi;j
~xxiþ1;j � ~xxi;j

dx
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and

Z
f ~PPi;j; ~PPiþ1;jg

xdy ¼
~yyiþ1;j � ~yyi;j
~xxiþ1;j � ~xxi;j



Z ~xxiþ1;j

~xxi;j

xdx ¼
~yyiþ1;j � ~yyi;j
~xxiþ1;j � ~xxi;j

~xx2iþ1;j � ~xx2i;j
2

0
@

1
A ¼ ð~yyiþ1;j � ~yyi;jÞ 


~xxiþ1;j � ~xxi;j
2

:

Similar considerations show that, in general, the line integral of a polynomial function over a line segment

can be reduced to a one-dimensional integral of the polynomial and can be computed analytically.

Therefore, all boundary integrals in (4.2) can be computed analytically; we will not write out these explicit
expressions.

4.1.1. Geometric considerations

In Fig. 3, we show a particular example of a cell of an old mesh and its nearest neighbors, with the
corresponding cell of the new mesh superposed. We next introduce a new framework for remapping, based

on the following decomposition of the volume of the new cell (see Fig. 3):

f ~PPi;j; ~PPiþ1;j; ~PPiþ1;jþ1; ~PPi;jþ1g ¼ fPi;j; Piþ1;j; Piþ1;jþ1; Pi;jþ1g þ fPiþ1;j; ~PPiþ1;j; ~PPiþ1;jþ1; Piþ1;jþ1g
� fPi;j; ~PPi;j; ~PPi;jþ1; Pi;jþ1g þ fPi;jþ1; Piþ1;jþ1; ~PPiþ1;jþ1; ~PPi;jþ1g
� fPi;j; Piþ1;j; ~PPiþ1;j; ~PPi;jg: ð4:5Þ

The first term of the right-hand side of (4.5) is the boundary of the old cell, C
iþ1
2
;jþ1
2

. We note that the areas

that are covered by the continuous movement of the faces from their old to their new positions, which we

term the swept regions, can be written as

dF
iþ1
2
;j
¼ fPi;j; Piþ1;j; ~PPiþ1;j; ~PPi;jg; dF

i;jþ1
2

¼ fPi;j; ~PPi;j; ~PPi;jþ1; Pi;jþ1g;

etc. Using this definition, we rewrite (4.5) as

oð ~CC
iþ1
2
;jþ1
2

Þ ¼ oðC
iþ1
2
;jþ1
2

Þ þ oðdF
iþ1;jþ1

2

Þ � oðdF
i;jþ1

2

Þ þ oðdF
iþ1
2
;jþ1

Þ � oðdF
iþ1
2
;j
Þ: ð4:6Þ

This partitioning is valid for other relative locations of old and new meshes as shown in Figs. 4(a) and (b).

Fig. 3. Old and new mesh. Vertices of the old mesh are marked by solid circles, and vertices of the new mesh are marked by solid

squares. Sides of the new mesh are bold lines, and displacements of the vertices are shown by dashed arrows.
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In general, the swept regions can overlap each other. The two line integrals around an overlapped region

will cancel because of the opposite orientations of the boundaries. For example, in Fig. 4(a), the triangle

Pi;j; a; ~PPi;j (where a is the intersection of segments ~PPi;j; ~PPiþ1;j and Pi;j; Pi;jþ1) is not a part of new cell ~CCiþ1
2
;jþ1
2

,

but is part of both of the swept regions dF
iþ1
2
;j
and dF

i;jþ1
2

. However, the contribution of this triangle to the

new cell volume is zero; e.g., the contribution of the segment aPi;j is zero because it participates in both the
line integral over the boundary of the old cell, and the line integral over the boundary of the swept region

dF
i;jþ1

2

, with opposite signs. Similarly, the area integrals of density over this triangle in the swept regions

dF
i;jþ1

2

and dF
iþ1
2
;j
appear with opposite sign and cancel. These cancellations are easily recognized by

recalling
R
AB ¼ �

R
BA.

Now the expression for the new cell mass can be written as that of the old cell and plus contributions
from the swept regionsI

o ~CC
iþ1
2
;jþ1
2

¼
I
C
iþ1
2
;jþ1
2

þ
I
oðdF

iþ1;jþ1
2

Þ
�
I
oðdF

i;jþ1
2

Þ
þ
I
oðdF

iþ1
2
;jþ1

Þ
�
I
oðdF

iþ1
2
;j
Þ
;

where in each integral the integrand is the density. Since the volume integral and the boundary integrals are

equivalent for linear functions, we can write the following compact formula for the new mass:

mex
iþ1
2
;jþ1
2

¼ m
iþ1
2
;jþ1
2

þFex

iþ1;jþ1
2

�Fex

i;jþ1
2

þFex

iþ1
2
;jþ1

�Fex

iþ1
2
;j
; ð4:7Þ

where the exact ‘‘fluxes’’ Fex are

Fex

i;jþ1
2

¼
Z
oF

i;jþ
1
2

q

�
þ oq

ox

 ðx� x

i;jþ1
2

Þ þ oq
oy


 ðy � y
i;jþ1

2

Þ
�
dxdy þOðh4Þ: ð4:8Þ

Here q and its derivatives are all evaluated at the point

P
i;jþ1

2

¼ ðx
i;jþ1

2

; y
i;jþ1

2

Þ:

Fig. 4. Partitioning of the new cell into the old cell and the swept regions.
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This equation results from using a Taylor series expansion about the point P
i;jþ1

2

. Similarly,

Fex

iþ1
2
;j
¼
Z
oF

iþ
1
2
;j

q

�
þ oq

ox

 ðx� x

iþ1
2
;j
Þ þ oq

oy

 ðy � y

iþ1
2
;j
Þ
�
dxdy þOðh4Þ; ð4:9Þ

where q and its derivatives are evaluated at

P
iþ1
2
;j
¼ ðx

iþ1
2
;j
; y

iþ1
2
;j
Þ:

4.2. SFB/DC method

Now consider the situation presented in Fig. 5(a), where just one vertex. Pi;j has been moved to a new
position ~PPi;j. Application of the flux version of the CIB/DC method (3.15) to this particular case gives

mde
iþ1
2
;jþ1
2

¼ m
iþ1
2
;jþ1
2

þ q
i�1
2
;jþ1
2


 Va;Pi;j; ~PPi;jþ1 þ q
i�1
2
;j�1
2


 Va; ~PPi;j;b;Pi;j þ q
iþ1
2
;j�1
2


 Vb;Piþ1;j;Pi;j ; ð4:10Þ

where V is the positive volume defined by its subscripts. Here a and b are the intersections of the sides of the

new and old cells, see Fig. 5(a).

The line segment fPi;j; ~PPi;jg divides the quadrilateral fa; ~PPi;j; b; Pi;jg into two triangles fa; ~PPi;j; Pi;jg and
f ~PPi;j; b; Pi;jg. Now it is easy to see that the union of the triangle fa; ~PPi;j; Pi;jg with the triangle

fa; Pi;j; ~PPi;jþ1g ¼ ~CC
iþ1
2
;jþ1
2

\ C
i�1
2
;jþ1
2

is the swept region dF
i;jþ1

2

. Similarly, the union of the triangle f ~PPi;j; b; Pi;jg and the triangle

f ~PPiþ1;j; b; Pi;jg ¼ ~CC
iþ1
2
;jþ1
2

\ C
iþ1
2
;j�1
2

is the swept region dF
iþ1
2
;j
. Thus (4.10) can be rewritten

mde
iþ1
2
;jþ1
2

¼ m
iþ1
2
;jþ1
2

� q
i�1=2;jþ1

2


 V ðdF
i;jþ1

2

Þ � q
iþ1
2
;j�1
2


 V ðdF
iþ1
2
;j
Þ

þ ðq
i�1
2
;j�1
2

� q
iþ1
2
;j�1
2

Þ 
 V ~PPi;j;b;Pi;j þ ðq
i�1
2
;j�1
2

� q
i�1
2
;jþ1
2

Þ 
 Va; ~PPi;j;Pi;j
� �

; ð4:11Þ

where the volumes of the swept regions are negative due to the sign convention adopted in the previous

section. It is clear that the second and third terms on the right-hand-side of (4.11) are piecewise constant

Fig. 5. Comparison of CIB/DC and SFB/DC.
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approximations to the corresponding fluxes in (4.7). The expression in curly brackets on the second line of

(4.11) is Oðh3Þ for smooth functions qðrÞ. Thus, if we define mda
iþ1
2
;jþ1
2

as

mda
iþ1
2
;jþ1
2

¼ m
iþ1
2
;jþ1
2

� q
i�1=2;jþ1

2


 V ðdF
i;jþ1

2

Þ � q
iþ1
2
;j�1
2


 V ðdF
iþ1
2
;j
Þ; ð4:12Þ

then

mda
iþ1
2
;jþ1
2

� mde
iþ1
2
;jþ1
2

¼ Oðh3Þ:

That is, the formal order of accuracy of mda
iþ1
2
;jþ1
2

with respect to the exact mass is the same as the order of

accuracy of the CIB/DC method.
In the situation depicted in Fig. 5(b)

mde
iþ1
2
;jþ1
2

¼ m
iþ1
2
;jþ1
2

þ q
i�1
2
;jþ1
2


 Va; ~PPi;j; ~PPi;jþ1 � q
iþ1
2
;j�1
2


 Va;Pi;j;Piþ1;j: ð4:13Þ

Using similar arguments as presented for the case depicted in Fig. 5(a), we have

mde
iþ1
2
;jþ1
2

¼ m
iþ1
2
;jþ1
2

� q
i�1=2;jþ1

2


 V ðdF
i;jþ1

2

Þ � q
iþ1
2
;jþ1
2


 V ðdF
iþ1
2
;j
Þ

þ ðq
i�1
2
;jþ1
2

� q
iþ1
2
;jþ1
2

Þ 
 V ~PPi;j;Pi;j;a

� �
; ð4:14Þ

where the volume of the swept region dF
i;jþ1

2

is negative, but volume of dF
iþ1
2
;j
is now positive. Note that the

density in the term on the right-hand-side now is that of cell C
iþ1
2
;jþ1
2

. The error in this approximation is

again Oðh3Þ, since the triangle f ~PPi;j; Pi;j; ag appears in both swept regions, but with opposite sign, and so
cancels. Thus, if we define the approximate mass as

mda
iþ1
2
;jþ1
2

¼ m
iþ1
2
;jþ1
2

� q
i�1=2;jþ1

2


 V ðdF
i;jþ1

2

Þ � q
iþ1
2
;jþ1
2


 V ðdF
iþ1
2
;j
Þ; ð4:15Þ

we maintain the same formal order of accuracy as the original CIB/DC has.

Based on the previous examples, we now define a new simplified face-based donor-cell (SFB/DC) as
follows:

mda
iþ1
2
;jþ1
2

¼ m
iþ1
2
;jþ1
2

þFda

iþ1;jþ1
2

�Fda

i;jþ1
2

þFda

iþ1
2
;jþ1

�Fda

iþ1
2
;j
: ð4:16Þ

Here the approximate ‘‘fluxes’’ are

Fda

i;jþ1
2

¼ q
i;jþ1

2


 V ðdF
i;jþ1

2

Þ; Fda

iþ1
2
;j
¼ q

iþ1
2
;j

 V ðdF

iþ1
2
;j
Þ; ð4:17Þ

etc., and where V ðdF
i;jþ1

2

Þ is a signed volume. The density on the faces depends on the sign of the volume of
the swept region (as appeared in the examples at the beginning of this section):

q
i;jþ1

2

¼
q
iþ1
2
;jþ1
2

; V ðdF
i;jþ1

2

ÞP 0;

q
i�1
2
;jþ1
2

; V ðdF
i;jþ1

2

Þ < 0;

(
q
iþ1
2
;j
¼

q
iþ1
2
;jþ1
2

; V ðdF
iþ1
2
;j
ÞP 0;

q
iþ1
2
;j�1
2

; V ðdF
iþ1
2
;j
Þ < 0:

(
ð4:18Þ

Because the SFB/DC is not equivalent to CIB/DC, there is no guarantee that mean density over new cell

will always be a positive combination of the old densities. First, let us analyze the formulas (4.16)–(4.18)

from this point of view for the example presented in Fig. 5. The expression for the new mass in the SFB/DC

method is defined in (4.15), which can be rewritten in terms of densities as follows:
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qda
iþ1
2
;jþ1
2

¼ 1

V ð ~CC
iþ1
2
;jþ1
2

Þ

 V ðC

iþ1
2
;jþ1
2

Þ
�

� V ðdF
iþ1
2
;j
Þ

����
����
�

 q

iþ1
2
;jþ1
2

þ V ðdF
i;jþ1

2

Þ
����

���� 
 qi�1=2;jþ1
2

: ð4:19Þ

A sufficient condition for positivity of density is

V ðdF
iþ1
2
;j
Þ

����
����6 V ðC

iþ1
2
;jþ1
2

Þ: ð4:20Þ

The necessary condition may be much weaker due to any positive contribution from the cell C
i�1
2
;jþ1
2

, see

(4.14). However, the condition (4.20) may become necessary if
q
i�1
2
;jþ1
2

� q
iþ1
2
;jþ1
2

:

More generally, we can write the SFB/DC method in terms of densities as follows:

qda
iþ1
2
;jþ1
2

¼ 1

V ~CC
iþ1
2
;jþ1
2

� �
(

V C
iþ1
2
;jþ1
2

� �

þ

V

 
dF

iþ1;jþ1
2

!
�
�����V
 

dF
iþ1;jþ1

2

!�����
2

�
V

 
dF

i;jþ1
2

!
þ
�����V
 

dF
i;jþ1

2

!�����
2

þ
V

 
dF

iþ1;jþ1
2

!
�
�����V
 

dF
iþ1;jþ1

2

!�����
2

�
V

 
dF

i;jþ1
2

!
þ
�����V
 

dF
i;jþ1

2

!�����
2

)

 q

iþ1
2
;jþ1
2

þ
V

 
dF

iþ1;jþ1
2

!
þ V

 
dF

iþ1;jþ1
2

!�����
�����

2

 q

iþ3
2
;jþ1
2

�
V

 
dF

i;jþ1
2

!
�
�����V
 

dF
i;jþ1

2

!�����
2


 q
i�1
2
;jþ1
2

þ
V

 
dF

iþ1
2
;jþ1

!
þ
�����V
 

dF
iþ1
2
;jþ1

!�����
2


 q
iþ1
2
;jþ3

2

�
V

 
dF

iþ1
2
;j

!
�
�����V
 

dF
iþ1
2
;j

!�����
2


 q
iþ1
2
;j�1
2

: ð4:21Þ

In this complicated expression, the coefficients of all the density terms are positive or zero, excepting

possibly that of the central density q
iþ1
2
;jþ1
2

. For the central density coefficient to be positive, we will have to

impose additional restrictions on the displacements that guarantee that the sum of all the negatively signed

volumes (those taken from the volume of the original cell) of the swept regions do not exceed V ðC
iþ1
2
;jþ1
2

Þ.
An important property of the SFB/DC method is that positivity (and, therefore the boundness of the new

densities) depends only on the displacement field.

Although CIB/DC and SFB/DC have the same order of accuracy for smooth qðrÞ – i.e., they both are
first-order accurate – we have not yet discussed the case of nonsmooth qðrÞ. This will be illustrated in
numerical examples. We close this section by remarking that while we are not actually interested in first-

order methods, we will use the same framework to construct second-order methods.

5. Positivity-preserving error compensation algorithm

In this section, we analyze the errors related to the SFB/DC method and describe a technique that

compensates these errors, leading to a second-order accurate method that preserves the positivity property
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of SFB/DC. This compensation was inspired by multidimensional positive definite advection transport

algorithm (MPDATA), which underlies several nonoscillatory advection schemes; see [21,31,32].

5.1. 1D error analysis and compensation

Consider a nonuniform 1D old grid whose nodal coordinates are contained in the interval [xmin, xmax]:
xmin ¼ x1 < x2; . . . ; xm�1 < xm ¼ xmax . The cells of the grid are labeled by half indices – Ciþ1

2

. The coordinate

of the cell center is x
iþ1
2

¼ ðxiþ1 þ xiÞ=2, and the length of the cell is hiþ1
2

¼ V ðC
iþ1
2

Þ ¼ xiþ1 � xi. Coordinates

of the new grid are distinguished with a ‘‘tilde’’, e.g., ~xxi, etc. The exact mass of a new cell is

mex
iþ1
2

¼
Z ~xxiþ1

~xxi

qðxÞdx ¼
Z xi

~xxi

qðxÞdxþ
Z xiþ1

xi

qðxÞdxþ
Z ~xxiþ1

xiþ1

qðxÞdx; ð5:1Þ

which is valid for either ~xxi P xi or ~xxi 6 xi.
The flux form of (5.1) is written

mex
iþ1
2

¼ m
iþ1
2

þFex
iþ1 �Fex

i ; ð5:2Þ

where

Fex
i ¼

Z ~xxi

xi

qðxÞdx ð5:3Þ

is the exact density flux at node i. In the 1D case, the swept region for Fi ¼ xi is dFi ¼ ½~xxi; xi�.
The SFB/DC algorithm in 1D is

mda
iþ1
2

¼ m
iþ1
2

þFda
iþ1 �Fda

i : ð5:4Þ

Let the displacement of the i-th node be dxi ¼ V ðdFiÞ ¼ ~xxi � xi. Then Fda
i is defined as

Fda
i ¼ qi 
 dxi; ð5:5Þ

where

qi ¼
q
iþ1
2

; dxi P 0;

q
i�1
2

; dxi < 0:

(
ð5:6Þ

The error of the donor-cell approximation in 1D for mass is

mex
iþ1
2

� mda
iþ1
2

¼ eexiþ1 � eexi ; ð5:7Þ

where eexi , the error in the density flux at node i, is

eexi ¼ Fex
i �Fda

i ¼

R xiþdxi
xi

qdx� dxi 
 qiþ1
2

; dxi P 0;R xiþdxi
xi

qdx� dxi 
 qi�1
2

; dxi < 0;

8<
: ð5:8Þ

To estimate this error, we use the Taylor expansion of the function qðxÞ at the cell center x
iþ1
2

if dxi > 0,
or at the cell center x

i�1
2

if dxi < 0. If dxi > 0, then

qðxÞ ¼ qðx
iþ1
2

Þ þ dq
dx

����
x
iþ
1
2


 ðx� x
iþ1
2

Þ þOðh2Þ ¼ q
iþ1
2

þ dq
dx

����
x
iþ
1
2


 ðx� x
iþ1
2

Þ þOðh2Þ; ð5:9Þ

because qðx
iþ1
2

Þ ¼ q
iþ1
2

þOðh2Þ:
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Using the Taylor expansion (5.9) or the similar expansion about x
i�1
2

, we can rewrite the error in (5.8)

as

eexi ¼

dq
dx

��
x
iþ
1
2



R ~xxi
xi
ðx� x

iþ1
2

ÞdxþOðh3Þ; dxi P 0;

dq
dx

��
x
i�
1
2



R ~xxi
xi
ðx� x

i�1
2

ÞdxþOðh3Þ; dxi < 0:

8>><
>>: ð5:10Þ

The integrals can be computed explicitly, yielding

eexi ¼

dxi
2

 dq
dx

��
x
iþ
1
2


 ðdxi � h
iþ1
2

Þ þOðh3Þ; dxi P 0;

dxi
2

 dq
dx

��
x
i�
1
2


 ðdxi þ h
i�1
2

Þ þOðh3Þ; dxi < 0:

8><
>: ð5:11Þ

The error eexi in the mass is Oðh2Þ: since density is mass/length, and length is OðhÞ; i.e., the error in density is
first order.

Suppose that we have a first-order approximation for dq=dx:

dq
dx

� �
i�1
2

¼ dq
dx

����
x
i�
1
2

þOðhÞ: ð5:12Þ

Dropping all terms of Oðh3Þ, we derive the following estimate for the error in the flux:

e�i ¼
dxi
2

 dq

dx

� �
iþ1
2


 ðdxi � h
iþ1
2

Þ; dxi P 0;

dxi
2

 dq

dx

� �
i�1
2


 ðdxi þ h
i�1
2

Þ; dxi < 0

8<
: ð5:13Þ

to Oðh3Þ.
We can use this estimate to compensate the error and so improve the order of accuracy of the

remap. Specifically, we can obtain a third-order accurate approximation for m
iþ1
2

, in contrast to the

donor-cell approximation, which is second-order accurate, by approximately compensating the error in

fluxes:

mex
iþ1
2

� mda
iþ1
2

þ e�iþ1 � e�i : ð5:14Þ

The important issue at this point is how to approximate the density derivative ðdq=dxÞ
iþ1
2

. When qðrÞ is
smooth, the choice of ðdq=dxÞ

iþ1
2

may affect the monotonicity of the remap, but probably will not have any

other significant effect. When qðrÞ is not smooth, the properties of the remapping algorithm may depend

significantly on this choice.

The simplest approximation is the central differencing

dq
dx

� �
iþ1
2

¼
qiþ1

2
� qi�1

2

xiþ1
2
� xi�1

2

¼
qiþ1

2
� qi�1

2

0:5 
 ðhiþ1
2
þ hi�1

2
Þ : ð5:15Þ

This choice is easily recognized as being equivalent to linear reconstruction of the density between cell

centers, and leads to the following error estimate:

ecenteri ¼

dxi
2



q
iþ1
2

�q
i�1
2

0:5
ðh
iþ1
2

þh
i�1
2

Þ 
 ðdxi � hiþ1
2
Þ; dxi P 0;

dxi
2



q
iþ1
2

�q
i�1
2

0:5
ðh
iþ1
2

þh
i�1
2

Þ 
 ðdxi þ hi�1
2
Þ; dxi < 0:

8>>>><
>>>>:

ð5:16Þ
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However, it is well known that central differencing, used directly in (5.14), can produce negative q (i.e., the
algorithm is not positivity preserving) and in many circumstances may be computationally unstable.

Instead, we have chosen to proceed in the spirit of [31] compensating the error with an approximation of

ecenteri that depends on the sign of the displacement. The resulting algorithm will always produce a positive

density with suitable restrictions on the grid movement. We use the superscript mc for this approximation.

The equations have the form

mmc
iþ1
2

¼ mda
iþ1
2

þFmc
iþ1 �Fmc

i ; ð5:17Þ

where the corrective fluxes Fmc are defined as

Fmc
i ¼ qdai

0:5ðq
iþ1
2

þ q
i�1
2

Þ 
 e
center
i ð5:18Þ

and

qdai ¼
qda
iþ1
2

; ecenteri P 0;

qda
i�1
2

; ecenteri < 0:

8<
: ð5:19Þ

There are alternative methods to estimate ðdq=dxÞ
iþ1
2

in the error (5.13). In [24] we consider one such

method, based on the minmod procedure of estimating derivatives, see e.g., [18]. A formal analysis shows

that the minmod derivative is first-order accurate, as is required in our derivations. We will call this the mm

method. In [24] we demonstrated with numerical examples that the minmod approach can significantly

improve the preservation of monotonicity when compared with the original mc method, while imposing less

restriction on the displacement field. However, mm produces less sharp profiles than the mc method.

To investigate the accuracy of the mc remapping, we assume that qðxÞ is a smooth function of x. We
make no assumptions about the smoothness of the grid or the displacements dxi. We note that
ecenteri ¼ Oðh2Þ. Further, the coefficient of ecenteri in (5.18) is equal to 1þOðhÞ. Thus we have

Fmc
i ¼ ð1þOðhÞÞ 
 ecenteri ¼ eexi þOðh3Þ

and so the mc remapping method is third-order accurate for mass.

To interpret formulas (5.17)–(5.19), it is convenient to define pseudo displacements by

Dxi ¼
ecenteri

0:5ðq
iþ1
2

þ q
i�1
2

Þ ; ð5:20Þ

noting that ecenteri has the same sign as Dxi. Now the fluxes in the mc method, (5.18) and (5.19), can be
written in a form that resembles those for the donor-cell method, (5.5) and (5.6):

Fmc
i ¼ qdai 
 Dxi; ð5:21Þ

where

qdai ¼
qda
iþ1
2

; Dxi P 0;

qda
i�1
2

; Dxi < 0:

8<
: ð5:22Þ

To illustrate the remapping based on (5.17), assume that Dxi and Dxiþ1 are positive. Then

mmc
iþ1
2

¼ mda
iþ1
2

þ qdaiþ3
2

 Dxiþ1 � qda

iþ1
2


 Dxi ð5:23Þ
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and

qmc
iþ1
2

¼
~hh
iþ1
2

� Dxi

~hh
iþ1
2

0
@

1
Aqda

iþ1
2

þ Dxiþ1
~hhiþ3

2

 !
qdaiþ3

2
: ð5:24Þ

The coefficient of qda
iþ3
2

is positive by assumption. For the coefficient of qda
iþ1
2

to be positive, we must require

Dxi < ~hh
iþ1
2

:

More generally, the positivity will depend on the displacements at both sides of the cell. To allow for

pseudo displacements at both vertices, it is sufficient to require

Dxi <
h
iþ1
2

2
: ð5:25Þ

An important difference between the da and mc methods is that the sum of coefficients is not equal to

unity in the latter case. The sum of coefficients is actually

~hh
iþ1
2

� Dxi þ Dxiþ1

~hh
iþ1
2

¼ 1þ Dxiþ1 � Dxi
~hh
iþ1
2

: ð5:26Þ

In general, the discrepancy

r ¼ Dxiþ1 � Dxi
~hh
iþ1
2

ð5:27Þ

will be nonzero, of either sign, and have magnitude up to 1. However, enforcing the positivity of density will

require us to restrict the rezone displacement. Using (5.20) and (5.13), we can write:

Dxi ¼ dxi 

q
iþ1
2

� q
i�1
2

q
iþ1
2

þ q
i�1
2



dxi � h

iþ1
2

0:5ð~hh
iþ1
2

þ ~hh
i�1
2

Þ
: ð5:28Þ

Assume that the displacement dxi is positive; then the first factor in (5.28) is positive, and the third factor is
negative. However the second factor can be of either sign. The more restrictive case, in the sense of sat-

isfying (5.25) occurs when

q
iþ1
2

< q
i�1
2

:

Then the second factor is negative and Dxi is positive.
Since q is positive,

q
iþ1
2

� q
i�1
2

q
iþ1
2

þ q
i�1
2

������
������6 1: ð5:29Þ

However this ratio can be very close to 1 if q
iþ1
2

� q
i�1
2

or vice versa. Thus, as a sufficient condition, (5.28)

can be written

Dxi 6 dxi 

h
iþ1
2

� dxi

0:5ð~hh
iþ1
2

þ ~hh
i�1
2

Þ
: ð5:30Þ
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Expressing ~hh
iþ1
2

and ~hh
i�1
2

in terms of h
iþ1
2

and h
i�1
2

, we can write

h
iþ1
2

� dxi

0:5ð~hh
iþ1
2

þ ~hh
i�1
2

Þ
¼

h
iþ1
2

� dxi

0:5ðh
iþ1
2

þ h
i�1
2

þ dxiþ1 � dxi�1Þ
:

In the worse case.

h
i�1
2

� 0; dxi � 0 � dxiþ1; dxi�1 �
h
i�1
2

2
;

we find

h
iþ1
2

� dxi

0:5ð~hh
iþ1
2

þ ~hh
i�1
2

Þ
< 2 or Dxi 6 2 
 dxi:

Now we see that (5.25) will be satisfied if

2dxi 6

~hh
iþ1
2

2
¼

h
iþ1
2

þ dxiþ1 � dxi

2
: ð5:31Þ

Analysis of (5.31) shows that a sufficient condition to ensure this inequality is

dxi <
h
iþ1
2

6
; jdxiþ1j <

h
iþ1
2

6
ð5:32Þ

or, in terms of the new coordinates,

xi �
xi � xi�1
6

< ~xxi < xi þ
xiþ1 � xi
6

: ð5:33Þ

To summarize, our mc method requires a more restrictive condition on the displacements than SFB/DC;

it is not monotone, because the coefficients of the various density terms do not sum to 1. However the mc

method is positive definite because all coefficients are positive, has a higher order of accuracy than SFB/DC,

and is conservative because it is written in flux form.

Although qmc does not preserve monotonicity of qda, the individual values are positive and bounded
from above. That is, using the fact that all qda and ~hh

iþ1
2

are positive, and that the total mass is conserved, we
can write for any particular cell jþ 1

2

qmc
jþ1
2


 ~hh
jþ1
2

6

X
cells

qmc
iþ1
2


 ~hh
iþ1
2

¼ M and so qmc
jþ1
2

6
M
~hh
iþ1
2

:

Clearly more accurate estimates would be useful: however, the estimates above guarantee that the mc

method is stable in the sense that it cannot produce unbounded densities.

5.2. 2D error analysis and compensation

Here we extend the analysis of the previous subsection to two dimensions and a logically rectangular

grid. Our goal is to derive a 2D version of the mc remapping; i.e., a two-pass process in which the first step

is the da algorithm, and the second step is a compensation of the second-order error, and that is both

conservative and positivity preserving.

284 L.G. Margolin, M. Shashkov / Journal of Computational Physics 184 (2003) 266–298



To analyze the error in the SFB/DC method in 2D, we write the difference between the exact mass and

the donor-cell mass

mex
iþ1
2
;jþ1
2

� mda
iþ1
2
;jþ1
2

¼ ðeex
iþ1;jþ1

2

� eex
i;jþ1

2

Þ þ ðeex
iþ1
2
;jþ1
2

� eex
iþ1
2
;j
Þ;

where

eex
i;jþ1

2

¼ Fex

i;jþ1
2

�Fda

i;jþ1
2

; eex
iþ1
2
;j
¼ Fex

iþ1
2
;j
�Fda

iþ1
2
;j
:

The center of volume of the cell C
iþ1
2
;jþ1
2

is the point

P
iþ1
2
;jþ1
2

¼ ðx
iþ1
2
;jþ1
2

; y
iþ1
2
;jþ1
2

Þ;

where

x
iþ1
2
;jþ1
2

¼

R
C
iþ
1
2
;jþ
1
2

xdV

V ðC
iþ1
2
;jþ1
2

Þ ; y
iþ1
2
;jþ1
2

¼

R
C
iþ
1
2
;jþ
1
2

y dV

V ðC
iþ1
2
;jþ1
2

Þ : ð5:34Þ

The coordinates of these points can be computed exactly, see Section 4.1.

Because q
iþ1
2
;jþ1
2

¼ qðx
iþ1
2
;jþ1
2

; y
iþ1
2
;jþ1
2

Þ þOðh2Þ, we can write

qðx; yÞ ¼ q
iþ1
2
;jþ1
2

þ oq
ox

����
P
iþ
1
2
;jþ
1
2


 ðx� x
iþ1
2
;jþ1
2

Þ þ oq
oy

����
P
iþ
1
2
;jþ
1
2


 ðy � y
iþ1
2
;jþ1
2

Þ þOðh2Þ: ð5:35Þ

Let us assume that V ðdF
i;jþ1

2

Þ > 0, i.e., that most of the swept region belongs originally to cell C
iþ1
2
;jþ1
2

.

Inserting the density distribution (5.35) into the exact flux
R

dF
i;jþ
1
2

qdV , and then subtracting the donor-cell
flux defined in (4.17) and (4.18), we find the error

eex
i;jþ1

2

¼ oq
ox

����
P
iþ
1
2
;jþ
1
2



Z

dF
i;jþ
1
2

ðx� x
iþ1
2
;jþ1
2

ÞdV þ oq
oy

����
P
iþ
1
2
;jþ
1
2



Z

dF
i;jþ
1
2

ðy � y
iþ1
2
;jþ1
2

ÞdV þOðh4Þ: ð5:36Þ

Because of the estimate

oq
ox

����
P
iþ
1
2
;jþ
1
2

¼ oq
ox

����
P
i;jþ
1
2

þOðhÞ;

we can rewrite (5.36) using the partial derivatives of q evaluated at the middle of the face – P
i;jþ1

2

:

eex
i;jþ1

2

¼ oq
ox

����
P
i;jþ
1
2



Z

dF
i;jþ
1
2

ðx� x
iþ1
2
;jþ1
2

ÞdV þ oq
oy

����
P
i;jþ
1
2



Z

dF
i;jþ
1
2

ðy � y
iþ1
2
;jþ1
2

ÞdV þOðh4Þ: ð5:37Þ

Eq. (5.37) will be more convenient in future analysis. Similar formulas hold for each of the other cell faces,

with appropriate changes of index (which also depends on the sign of the swept volumes). From (5.37), we

recognize that eex
i;jþ1

2

¼ Oðh3Þ and therefore overall accuracy of donor-cell method for masses is Oðh3Þ.
Furthermore, since

qda
iþ1
2
;jþ1
2

¼
mda

iþ1
2
;jþ1
2

V ðC
iþ1
2
;jþ1
2

Þ ;

and V ðC
iþ1
2
;jþ1
2

Þ ¼ Oðh2Þ, the da method for density has first-order accuracy.
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In analogy to the 1D case, we estimate the error by approximating the density derivatives oq=ox and
oq=oy. It is most natural to define the discrete analogs of derivatives at the nodes. For any plane region X,
we have by Green�s theoremZ

X

oq
ox
dxdy ¼

I
oX

qdy:

We define the centers of the sides by

P
iþ1
2
;j
;¼ ½0:5ðxi;j þ xiþ1;jÞ; 0:5ðyi;j þ yiþ1;jÞ�; P

i;jþ1
2

;¼ ½0:5ðxi;j þ xi;jþ1Þ; 0:5ðyi;j þ yi;jþ1Þ�:

Next, we construct a contour that is an octagon around each node by connecting the centers of volume of

the surrounding cells, and the centers of the sides. The nodal volume (see Fig. 6) is defined

Vi;j � V P
iþ1
2
;jþ1
2

; P
i;jþ1

2

; P
i�1
2
;jþ1
2

; P
i�1
2
;j
; P

i�1
2
;j�1
2

; P
i;j�1

2

; P
iþ1
2
;j�1
2

; P
iþ1
2
;j

� �� �
:

Using Green�s theorem, we obtain following approximation for oq=ox (see [30] for details):

oq
ox

� �
i;j

¼ 1

Vi;j

 q

iþ1
2
;jþ1
2

ðy
i;jþ1

2

�
� y

iþ1
2
;j
Þ þ q

i�1
2
;jþ1
2

ðy
i�1
2
;j
� y

i;jþ1
2

Þ

þ q
i�1
2
;j�1
2

ðy
i;j�1

2

� y
i�1
2
;j
Þ þ q

iþ1
2
;j�1
2

ðy
iþ1
2
;j
� y

i;j�1
2

Þ
�
: ð5:38Þ

A similar equation can be derived for the approximation of oq=oy at the node. We also define the average
value of density at the node as

qi;j ¼
q
iþ1
2
;jþ1
2

þ q
i�1
2
;jþ1
2

þ q
i�1
2
;j�1
2

þ q
iþ1
2
;j�1
2

4
:

Continuing the analogy with the 1D presentation, we define the volume of the pseudo swept region of the

face (i; jþ 1
2
) as

V
i;jþ1

2

¼ 1
2

dq
dx

� �
i;j

qi;j

,"
þ dq

dx

� �
iþ1;j

,
qiþ1;j

#


Z

dF
i;jþ
1
2

ðx

0
B@ � x

iþ1
2
;jþ1
2

ÞdV

1
CA

þ 1
2

dq
dy

� �
i;j

qi;j

,"
þ dq

dy

� �
iþ1;j

,
qiþ1;j

#


Z

dF
i;jþ
1
2

ðy

0
B@ � y

iþ1
2
;jþ1
2

ÞdV

1
CA: ð5:39Þ

Fig. 6. Control volume Vi;j and its pieces, used to discretize derivatives oq=ox, and oq=ox and average q at the node ði; jÞ. Boundary of
volume Vi;j is dashed line.
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Similar formulas can be derived for the other cell faces. Using these pseudo volumes, the second pass in the

mc method is written as

mmc
iþ1
2
;jþ1
2

¼ mda
iþ1
2
;jþ1
2

þFmc

iþ1;jþ1
2

�Fmc

i;jþ1
2

þFmc

iþ1
2
;jþ1

�Fmc

iþ1
2
;j
;

where the ‘‘mc-fluxes’’ are

Fmc

i;jþ1
2

¼ qda
i;jþ1

2


 V
i;jþ1

2

; Fmc

iþ1
2
;j
¼ qda

iþ1
2
;j

 V

iþ1
2
;j
: ð5:40Þ

The density on a face depends on the sign of the volume of its associated pseudo swept region similar to
formulas (5.22) in 1D

qda
i;jþ1

2

¼
qda
iþ1
2
;jþ1
2

; V
i;jþ1

2

P 0;

qda
i�1
2
;jþ1
2

; V
i;jþ1

2

< 0;

8<
: qda

iþ1
2
;j
¼

qda
iþ1
2
;jþ1
2

; V
iþ1
2
;j
P 0;

qda
iþ1
2
;j�1
2

; V
iþ1
2
;j
< 0:

8<
: ð5:41Þ

One can easily prove thatFmc ¼ eex þOðh4Þ, and so the 2D mc method is fourth-order accurate for masses
and second-order accurate with respect to q.
As in 1D, there are other choices for defining the volumes of the pseudo swept regions. One possibility is

described in [24], where the method of Barth and Jespersen [3] is used to approximate cell-centered de-
rivatives. We denote the results of the corresponding method by mb. Formally, the mb method has the

same order of accuracy as the mc method. In numerical examples, we will show that the mb method im-

proves the preservation of monotonicity of the remapping and relaxes requirements on the displacement

field. However, as is the case for the mm method in 1D the mb method produces less sharp profiles

compared to the mc method.

The condition that the second pass of our 2D mc method preserves positivity is that the sum of all

negatively signed volumes of the pseudo swept regions associated with ~CC
iþ1
2
;j1
2

do not exceed V ð ~CC
iþ1
2
;jþ1
2

Þ.

These volumes depend on both the original displacement field and on the density field itself. As in the 1D

case, it is possible to show that the preservation of positivity during the second pass can be enforced with a

condition like

jV
i;jþ1

2

j6CV ðdF
i;jþ1

2

Þ;

where C is a constant independent of h (see [24]). The value of this constant will depend on the geometrical

properties of the old grid, as well as the rezone procedure that leads to the new grid. Unfortunately, it is

more difficult to explicitly determine this constant in 2D, and a more practical solution is to enforce
positivity during the simulation.

All of the qualitative conclusions that we have made about the mc method in 1D hold in 2D as well: it is

second-order accurate: it is not monotone but is positivity preserving and conservative, and so produces

densities that are bounded from above.

6. Numerical results

Our remapping algorithm is intended to be coupled with a rezoner, and used in the context of ALE

simulations. However it is instructive to test it in a simpler environment, where there are no partial

differential equations, nor any Lagrangian algorithm. We will test the remapper in the context of in-

terpolation. That is, we will choose an underlying function, prescribe a grid motion, and compare the
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exact integrals of this function on the new grids to the numerical simulations. We consider examples of

logically rectangular grids and unstructured grids in 2D. Additional examples in 1D and 2D can be found

in [24].

6.1. Cyclic remapping

Here, we assume that we have a sequence of grids fxnI ; I ¼ 1; . . . ; Imax; n ¼ 0; . . . ; nmaxg, where the
subscript I represents multiple indices, which identify a point, on the grid (structured or unstructured),

and the superscript identifies a particular grid. It is convenient to think of the index n as representing a

fictitious time tn, which is a parameter to define the grid motion. We begin with a test function qðx; yÞ and
compute its means on grid x0I , then remap the function means from grid x0I to grid x1I , and then remap
resulting means from grid x1I to grid x2I , etc. This allows us to look at the cumulative effects of many
remappings.

Let us note that in our real calculations instead of computing integral averages over cells we just

compute its value at the center of mass, which is equal to the integral average with second-order accuracy.

6.2. 2D structured grids

Here, we test the da, mp and mb methods on 2D logically rectangular, structured grids (n.b. the mb

method is described in [24]). We assume a sequence of grids

xni;j; i ¼ 1; . . . ; imax; j ¼ 1; . . . ; jmax; n ¼ 0; . . . ; nmax;

where the subscripts identify the cell and the superscript identifies a particular grid in the sequence. In all
our tests we take imax ¼ jmax, and therefore in all figure captions we state only imax and nmax.

6.2.1. Tensor product grids

For our first series of tests, we generate a sequence of smooth grids in the unit square ½0; 1� � ½0; 1�, using
the functions

xðn; g; tÞ ¼ ð1� aðtÞÞn þ aðtÞn3; yðn; g; tÞ ¼ ð1� aðtÞÞg þ aðtÞg2;

aðtÞ ¼ sinð4ptÞ
2

; 06 n6 1; 06 g6 1; 06 t6 1: ð6:1Þ

This produces a sequence of tensor product grids grid {xni;j}, given by

xni;j ¼ xðni; gj; t
nÞ; yni;j ¼ yðni; gj; t

nÞ; ð6:2Þ

where tn ¼ n=nmax, n ¼ 0; . . . ; nmax; and

ni ¼ ði� 1Þ=ðimax � 1Þ; i ¼ 1; . . . ; imax; gj ¼ ðj� 1Þ=ðjmax � 1Þ; j ¼ 1; . . . ; jmax:

For t ¼ t0 ¼ 0, and t ¼ tn ¼ 1; aðtÞ is zero so that the initial and final grids are identical and uniform. In
Fig. 7. we show two intermediate grids. The first panel, Fig. 7(a), corresponds to a pseudo time t ¼ 0:375,
when the grid is stretched toward the top and right. The second panel, Fig. 7(b), corresponds to a pseudo

time t ¼ 0:625, when the grid is stretched toward the bottom and left.

We compare three methods for remapping on the sequence of the grids given by (6.1), the da method, the

mc method, and the mb method. Our first density represents a smooth function and is given by:

qðx; yÞ ¼ 1þ sinð2pxÞ sinð2pyÞ. We term these the ‘‘sine’’ tests. We use three different levels of refinement to
investigate convergence: imax ¼ jmax ¼ 65, 129, 257 with a corresponding number of pseudo time steps,
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nmax ¼ 320, 640, 1280, respectively. In Fig. 8 we show isolines for density at the final time nmax ¼ 320,
imax ¼ jmax ¼ 65.
The da method produces an overly smoothed solution and the isolines are very distorted. The mc and mb

methods produce better and qualitatively very similar results.

To investigate convergence and compare the methods quantitatively, we use the two norms:

jjq� � qjjmax ¼ maxi;j
jqh

iþ1
2
;jþ1
2

� qðx
iþ1
2
;jþ1
2

; y
iþ1
2
;jþ1
2

Þj; ð6:3Þ

jjq� � qjjL1 ¼
X
i;j

jqh

iþ1
2
;jþ1
2

�
� qðx

iþ1
2
;jþ1
2

; y
iþ1
2
;jþ1
2

Þj 
 V ðC
iþ1
2
;jþ1
2

�
:

Fig. 7. Two intermediate grids for tensor product grid movement, imax ¼ 17; jmax ¼ 17: (a) t ¼ 0:375; (b) t ¼ 0:625.

Fig. 8. Results for qðx; yÞ ¼ 1þ sinð2pxÞ sinð2pyÞ and smooth displacements field given by (6.1), isolines.
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In Table 1, we summarize the convergence results for the sine function and the sequence of tensor product

grids. The table shows that the da method has first-order convergence in both norms, whereas both the mc

and mb methods show second-order convergence in L1 norm, and slightly less than second-order in max
norm.
The second density will be termed the ‘‘peak’’ function and is defined

qðx; yÞ ¼ 0; r > 0:25;
maxð0:001; 4ðr � 0:25ÞÞ; r6 0:25;

r
�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy � 0:5Þ2

q
: ð6:4Þ

This function is shown in Fig. 9, where we also present surface plots for the remapped function. The
corresponding isolines are shown in Fig. 10. The da method produces poor results. The mb method overly

smooths the peak compared with the mc method.

Table 1

The errors in max and L1 norm for the sine tests and smooth displacement field

imax=nmax Norm da mc mb

65/320 L1 0.133 9.77E) 3 1.04E) 2
max 0.364 6.91E) 2 8.43E) 2

129/640 L1 7.73E) 2 2.54E) 3 2.63E) 3
max 0.214 2.82E) 2 3.39E) 2

257/1280 L1 4.19E) 2 6.40E) 4 6.53E) 4
max 0.117 1.13E) 2 1.32E) 2

Fig. 9. Numerical results for the peak function, nmax ¼ 320, imax ¼ jmax ¼ 65, surface plots.
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In Table 2 we summarize the convergence results for the peak density. Here we use only the L1 norm. The
table shows that the da method shows somewhat less than first-order convergence, while both the mc

method and mb methods show slightly more than first-order. Perhaps of greater significance, both the mc

and mb methods have almost an order of magnitude smaller error.

The third density function we use represents an oblique shock and will be termed the ‘‘shock’’ test. It is

defined as

qðx; yÞ ¼ 1; y > ðx� 0:4Þ=0:3;
0; y6 ðx� 0:4Þ=0:3:

�
ð6:5Þ

The isolines for the shock density are shown in Fig. 11, where we also present the results of the different

remappings for this test. The qualitative conclusion from these pictures is the same as for previous tests.

However one can see the relatively greater loss of monotonicity in the mc method compared to the mb
method.

In Table 3 we summarize the convergence results for the shock density test. Here, all methods are slightly

less than first-order accurate, with the m methods exhibiting about a twice smaller error than the da

method.

Fig. 10. Results for the peak test function and sequence of tensor product grids, isolines.

Table 2

The errors in L1 norm for the peak density function and sequence of tensor product grids

imax=nmax Norm da mc mb

65/320 L1 4.02E) 02 9.01E) 3 9.64E) 3
129/640 L1 2.48E) 2 3.76E) 3 3.99E) 3
257/1280 L1 1.42E) 2 1.52E) 3 1.61E) 3
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6.2.2. Random grids

Here, we use a sequence of random grids in which each grid is obtained by an independent random
perturbation of a uniform grid

xni;j ¼ ni þ crni h; yni;j ¼ gj þ crnj h; ð6:6Þ

where �0:56 rni , r
n
j 6 0:5 are random numbers. In Fig. 12 we show two realizations of these random grids

for imax ¼ jmax ¼ 17, for c ¼ 0:5 and 0.7. In this case, all grids are random and it is unlikely that we will ever
return to the original grid. Strictly speaking then, we cannot use these tests to measure convergence rate.

For the sine and peak test functions, the results are similar to those for tensor product grids for this test
function, and so we do not present them here (complete numerical results are presented in [24]). We note

that these results are more accurate than for the case of sequence of tensor product grids. Possibly the

random sequence of grids does not allow a systematic buildup of remapping error.

For the shock test function and sequence of random grids with c ¼ 0:5 the results are also similar to one
for tensor product grids and are not presented here, see [24]. If we increase the parameter c, which regulates
the degree of randomness, to 0.7, thus allowing larger displacements, then for the shock test function the mc

method produces negative densities. However the da and mb methods continue to produce only positive

densities. The corresponding graphs for these methods are presented in Fig. 13. This example demonstrates
that, in general, the mb method allows larger displacements than the mc method.

Fig. 11. Isolines of the shock test function and sequence of tensor product grids.

Table 3

The errors in L1 norm for the shock test and tensor product grids

imax=nmax Norm da mc mb

65/320 L1 0.109 4.56E) 2 4.73E) 2
129/640 L1 7.78E) 2 2.88E) 2 2.97E) 2
257/1280 L1 5.51E) 2 1.82E) 2 1.86E) 2
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Fig. 12. Two consecutive random grids: (a) c ¼ 0:5; (b) c ¼ 0:7

Fig. 13. Results for the shock function, nmax ¼ 100; imax ¼ jmax ¼ 65, and a sequence of random grids, c ¼ 0:7.
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The L1 errors for this case is presented in Table 4. Note that we present here results only for
imax ¼ jmax ¼ 65 and ¼ 129. At imax ¼ jmax ¼ 257, both the da and mb methods start to produce small,
negative densities.

6.2.3. Consecutive smoothing of an initially random grid

In last series of tests for structured grids we consider a sequence of grids that more closely simulates a

realistic situation in an ALE simulation. Here each grid in the sequence is obtained from the previous one

by smoothing

xnþ1i;j ¼
ðxni�1;j þ 2xni;j þ xniþ1;jÞ þ ðxni;j�1 þ 2xni;j þ xni;jþ1Þ

8

and similar formula for y. In our experiment, the initial grid is obtained from a uniform grid by random

perturbation

x0i;j ¼ ni þ rih; y0i;j ¼ gj þ rjh: ð6:7Þ

Here, �0:256 ri; rj 6 0:25 are random numbers, and h ¼ 1=ðimax � 1Þ. For nodes on the boundary of the
unit square, only one coordinate is perturbed. The initial grid, the grid after one smoothing and after 20

smoothing are shown in Fig. 14.

For this sequence of grids, we present remapping results only for the peak function. The results in Table

5 show a convergence rate slightly higher than first order for the da method, and slightly less than second
order for the mc method. Graphically, the remapped density is not distinguishable from the exact density,

and so is not shown.

Table 4

The errors in L1 norm for the shock test and random grid movement, c ¼ 0:7

imax=nmax Norm da mb

65/100 L1 4.90E) 2 2.71E) 2
129/100 L1 2.45E) 2 1.36E) 2

Fig. 14. Smoothing imax ¼ 17; jmax ¼ 17: (a) initial grid, and grid after one step of smoothing; (b) initial grid and ‘‘final grid’’ after 20
smoothing steps.
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6.3. Unstructured grids

In this section we will describe the results of remapping the peak density on a sequence of unstructured

grids obtained by consecutive smoothing. The initial grid is constructed in a series of steps. First, for a given

integer m we create points inside the unit square with the coordinates

xi;j ¼ ni

�
þ ð � 1Þiþj 
 h

4

�2
; yi;j ¼ gj

�
þ ð � 1Þiþjþ1 
 h

10

�2
;

ni ¼ ði� 0:5Þh; gj ¼ ðj� 0:5Þh; i; j ¼ 1; . . . ;m; h ¼ 1=m:

Next, we use this set of points to construct Voronoi cells, which surround the point. At each point P, the

associated Voronoi cell consists of that part of the plane in which all points are closer to P then to any other

point of the set. See, for example, [12,27] for additional details. The important topological property of this

tessellation is that exactly three edges meet at each vertex. In principle, degenerate cases in which edges of
zero length can exist. At this stage, we have a gird consisting of Voronoi cells, whose vertices define Voronoi

polygons. Finally, we square all the coordinates of the vertices. The resulting grid is shown in Fig. 15(a).

Our smoothing procedure for these unstructured grids is:

xnþ1k ¼ xnk þ a 

xnk1 þ xnk2 þ xnk3 � 3x

n
k

3
; k internal vertex;

xnþ1k ¼ xnk þ a 

xnk1 þ xnk2 � 2x

n
k

2
; k boundary vertex;

where the stencils for smoothing the internal and boundary are nodes of the sides sharing vertex k. The

nodes in the corners of the computational domain are fixed. The final grid after 2500 smoothing steps is

shown in Fig. 15(b).

Fig. 15. Initial and final unstructured grid, for m ¼ 19: (a) initial grid; (b) ‘‘final grid’’ after 2500 smoothing steps.

Table 5

The errors in L1 norm for peak test function and a sequence of grids obtained by consecutive smoothing

imax=gmax Norm da mc mb

65/20 L1 6.05E) 4 1.69E) 4 2.12E) 4
129/20 L1 2.80E) 4 4.92E) 5 4.92E) 5
257/20 L1 1.37E) 4 1.34E) 5 1.84E) 5
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The results of remapping the peak density are presented in Fig. 16. These plots are produced by

MATLAB [20]. The data are the values of density at the centers of volume of the Voronoi cells. MATLAB

performs its own triangulation (using the delaunay utility) to draw surfaces (using trimesh). Thus, the

vertices of the grid shown in Fig. 16 are the centers of volume of our original mesh.
The results of a convergence study are presented in Table 6. The behavior of each method on the un-

structured grid is similar to that on the structured grids. The da method shows first-order convergence while

the mc and mb methods show second-order convergence. The mc method produces the sharper peak.

7. Summary

In this paper we have constructed a second-order accurate, sign preserving, conservative interpolation
(remapping) algorithm suitable for use in continuous rezone ALE schemes, and applicable to both

Fig. 16. Remapping of peak test function on unstructured grids m ¼ 39 and 5000 smoothing steps: (a) function on initial grid;
(b) remap by the da method; (c) remap by the mc method; (d) remap by the mb method.

Table 6

The errors in L1 norm for peak test function on an unstructured grids

m=gmax Norm da mc mb

19/2500 L1 4.49E) 2 2.21E) 2 2.43E) 2
39/5000 L1 2.31E) 2 8.93E) 3 9.45E) 3
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structured and unstructured grids. The final scheme consists of two passes through the set of faces of the

grid. The first pass applies first-order accurate estimates of the remap fluxes to construct a first-order re-

mapping. The second pass estimates and compensates the lowest-order errors to improve the solution to

second-order accuracy. These estimates are based on the sign of the swept regions, and ensure sign pres-

ervation in the overall solution.

Within the estimates of the second-order error, we have the option of how to approximate local density

derivatives. We consider two choices, one based on central differencing and the other based on linear re-

construction with limiting. In a series of problems, we show that both choices exhibit second-order con-
vergence for smooth densities. For nonsmooth and discontinuous densities, we show that both choices have

very similar performance, with the central differencing being slightly more accurate and the Barth�s dif-
ferences being slightly less oscillatory. Both second-order accurate schemes are considerably more accurate

than the associated single pass scheme.
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